WFIRST's Dark Energy Observations in the Context of Euclid, LSST and DESI

RACHEL BEAN, CORNELL UNIVERSITY

Dark energy science has evolved significantly since its discovery

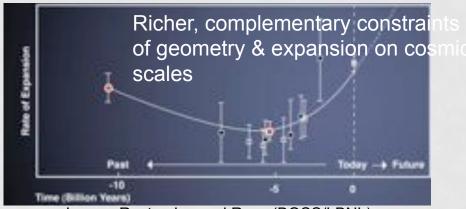
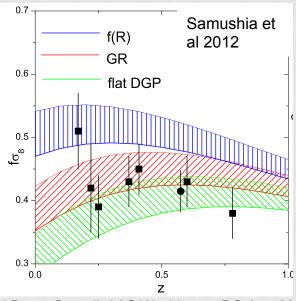
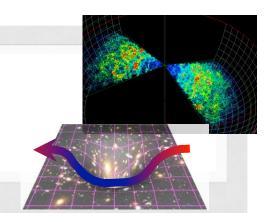



Image: Rostomian and Ross (BOSS/LBNL)


Measurements of the LSS linear growth rate complementary insight to geometry

	pernova Cosmology Proje zuki, et al., <i>Ap.J.</i> (2011)	ect
-0.2	Union2.1 SN Ia Compilation with SN	
-0.4	Systematics	BAO
-0.6	C	СМВ
€ -0.8	SNe	
-1.0		
-1.2 -		
-1.4 -		
0.0	0.1 0.2 Ω	0.3 0.4 0.5

Category	Theory	
	Scalar-Tensor theory	
	(incl. Brans-Dicke)	
	f(R) gravity	
	$f(\mathcal{G})$ theories	
	Covariant Galileons	
Horndeski Theories	The Fab Four	
	K-inflation and K-essence	
	Generalized G-inflation	
	Kinetic Gravity Braiding	
	Quintessence (incl.	
	universally coupled models)	
	Effective dark fluid	
Lorentz-Violating theories	Einstein-Aether theory	
Lorentz-violating theories	Hořava-Lifschitz theory	
	DGP (4D effective theory)	
> 2 new degrees of freedom	EBI gravity	
	TeVeS	

Many scalar-based matter and modified gravity theories. "Post-parameterized" formalism bridges theories and survey data.

While the theory can be detailed, the phenomenology can be concise

Scalar modifications to Einstein equations

Time-time (Newtonian)

$$\begin{split} m_0^2 & \Omega(t) \left[\frac{2k^2 - 6k_0}{a^2} \phi^N + 6H(\dot{\phi}^N + H\psi^N) \right] \\ &= -\delta \rho^N - \dot{\rho}_Q \pi^N - 2c(t)(\dot{\pi}^N - \psi^N) \\ &+ m_0^2 \dot{\Omega} \left[3\pi^N \left(H^2 - \dot{H} + \frac{k_0}{a^2} \right) + 3H \left(\dot{\pi}^N - \psi^N \right) + \frac{k^2}{a^2} \pi^N - 3 \left(\dot{\phi}^N + H\psi^N \right) \right] \end{split}$$

Modifications to ΛCDM + GR

Space-space traceless (Newtonian)

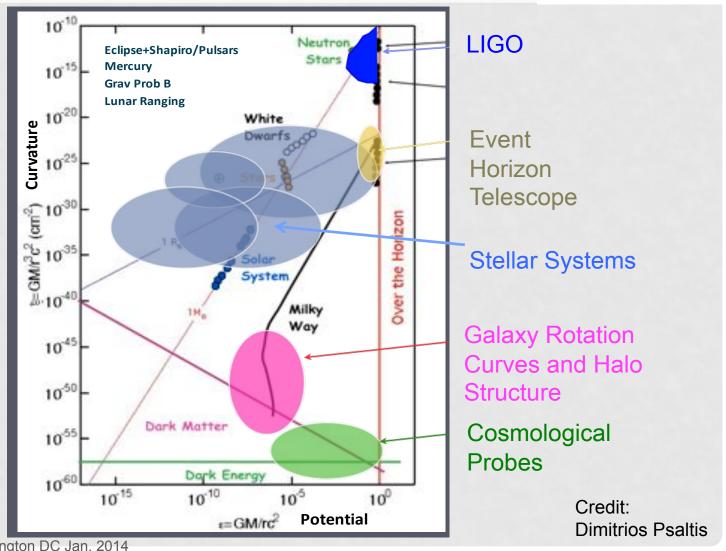
$$m_0^2 \Omega(t) \frac{k^2}{a^2} (\phi^N - \psi^N) = \bar{P}_m \Pi + m_0^2 \dot{\Omega} \frac{k^2}{a^2} \pi^N$$

Bloomfield et al 2012

 Phenomenology grouped by how they affect relativistic and non-relativistic matter evolution

$$k^{2}\Psi = -4\pi \frac{G_{\text{matter}}}{G_{\text{matter}}} a^{2}\rho \Delta$$
$$k^{2}(\Psi + \Phi) = -8\pi \frac{G_{\text{light}}}{G_{\text{light}}} a^{2}\rho \Delta,$$

Complementarity is the key to testing dark energy



- G_{matter} and G_{light} simpler but still allow powerful
 - new matter: G_{light} = G_{matter}≠G
 - change to GR: G_{light} ≠ G_{matter}
- Non-relativistic tracers => G_{matter}
 - galaxy positions & motions
 - Growth rate at precise z
 - Bias of tracer (galaxy) an issue

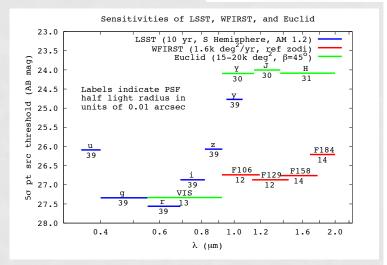
- Relativistic tracers => G_{light}
 - WL & CMB ISW + lensing
 - Direct tracers of potential, but
 - Need to relate lensing and surveyed galaxies
 - Systematics (e.g. photo-z, IAs...)
 - Integrated line of sight
- Cross correlation is vital
 - Reduces uncertainties from bias and initial conditions
 - Get at smoking gun G_{light} ≠ G_{matter}

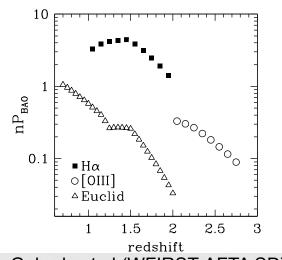
Vital to test of gravity & matter in environable beyond stellar systems

WFIRST reflects these advances in measurement & theory

- Don't presume a strong theoretical prior a-priori
 - Data will be good enough to test beyond w=-1 or w₀-w_a
 - Constrain growth and expansion in a model- independent way
- Search for a diverse array of signatures:
 - Geometry and inhomogeneity constraints across multiple epochs
 - Probe non-linear regimes
 - access many more modes & gravitational screening
 - Multiple tracers sampling distinct gravitational environments
 - galaxy, cluster, CMB and galaxy photons
- Recognizes importance of systematic control in realizing survey potential
 - survey complementarity/cross-correlation
 - Ascribe effects to cosmology rather than uncharacterized systematic.

Required breadth, depth & complexity not achievable by a single survey


- Trade offs in
 - Techniques (SN1a, BAO,RSD, WL, Clusters)
 - Photometric speed vs spectroscopic precision
 - Angular and spectral resolution
 - Astrophysical tracers (LRGs, ELGs, Lya/QSOs, clusters, CMB)
 - Epochs and scales to study
- Much more than a DETF FoM. Astrophysical & instrumental systematic control mitigation is crucial, but not so easily summarized.
 - Readiness vs technological innovation
 - Survey area vs depth and repeat imaging of the same sky (dithering, cadence and survey area overlap/config.)
- WFIRST, Euclid, LSST, DESI and others will make distinct and highly complementary contributions in these regards



In grossly simplified terms:

- All 4 probes (SN/BAO/RSD/WL). Unique SN1a capability with IFU for characterization
- Unique imaging with detailed multi-band, higher resolution lensing and DM mapping than possible from ground or with smaller telescope
- A higher density of spectroscopically selected galaxies for BAO/RSD 1<z<3
- Designed with complementarity to strengths of DESI, LSST, Euclid and others in mind
- Attention to systematics' control as a prime priority (e.g. WL shape measurement, SN1a characterization)

Spergel, Gehrels et al (WFIRST-AFTA SDT) 2013

Many surveys will make key contributions that I've not had time to discuss

- Photometric
 - DES, HSC, Next Generation CFHT
- Spectroscopic
 - BOSS, eBOSS, HETDEX, PFS, 4MOST, LAMOST

- Supernovae
 - DES, J-PAS, JWST
- Other wavelengths
 - ACTPol, SPTPol, Planck, Spider, CCAT
 - XMM, eROSITA
 - ALFALFA, SKA

No doubt I have missed some here, apologies if so.

A summary comparison

(based on publicly available data)

	DESI	LSST	Euclid	WFIRST-AFTA
Starts, duration	~2018, 5 yr	~2020, 10 yr	~2020, 7 yr	~2023, 5-6 yr
Area (deg²)	14,000 (N)	20,000 (S)	15,000 (N + S)	2,000 (S)
FoV (deg ²)	7.9	10	0.54	0.281
Diameter	4 (less 1.8+)	6.7	1.3	2.4
Spec. res. Δλ/λ	3-4000 (N _{fib} =5000)		250 (slitless)	550-800 (slitless)
Spec. range	360-980 nm		1.1-2 μm	1.35-1.95 μm
BAO/RSD	20-30m LRGs/[OII] ELGs 0.6 < z < 1.7, 1m QSOs/Lya 1.9 <z<4< td=""><td></td><td>~50m Hα ELGs Z~0.7-2.1</td><td>20m Hα ELGs z = 1-2, 2m [OIII] ELGS z = 2-3</td></z<4<>		~50m Hα ELGs Z~0.7-2.1	20m Hα ELGs z = 1-2, 2m [OIII] ELGS z = 2-3
pixel (arcsec)		0.7	0.13	0.12
Imaging/ weak lensing (0 <z<2.)< td=""><td></td><td>15-40 gal/arcmin² 5 bands 320-1080 nm</td><td>30-35 gal/arcmin² 1 broad vis. band 550– 900 nm</td><td>68 gal/arcmin² 3 bands 927-2000nm</td></z<2.)<>		15-40 gal/arcmin ² 5 bands 320-1080 nm	30-35 gal/arcmin ² 1 broad vis. band 550– 900 nm	68 gal/arcmin ² 3 bands 927-2000nm
SN1a		10^4 - 10^5 SN1a/yr z = 0.–0.7 photometric		2700 SN1a z = 0.1–1.7 IFU spectroscopy